

DPP – 1 (Magnetic Field & Force)

Video Solution on Website:- https://physicsaholics.com/home/courseDetails/34

Video Solution on YouTube:-

https://youtu.be/LbtAgQdCy0I

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/50

Q 1. Which of the following graphs represent variation of magnetic field B with distance r for a straight long wire carrying current

Q 2. The magnitude of magnetic field due to current carrying arc of radius R, having a current I subtending an angle of 60° at the center O is

- Q 3. A cell is connected between two points of a uniformly thick circular conductor. I_1 and I_2 are the currents flowing in two parts of the circular conductor of radius a. What will be the magnetic field at the center of the loop?
 - (a) zero (b) $\frac{\mu_0}{4\pi} \frac{(l_1 l_2) \sin 90^0}{r^2}$ (c) $\frac{\mu_0}{4\pi} \frac{(l_1 l_2) \sin 90^0}{r^2}$ (d) $\frac{\mu_0}{4\pi} \frac{2(l_1 + l_2)}{r^2}$

Q 4. A cell is connected between the points A and C of a circular conductor ABCD with O as centre and angle AOC = 60° If B₁ and B₂ are the magnitudes of the magnetic fields at O due to the currents in ABC and ADC respectively, then ratio $\frac{B_1}{B_2}$ is

Q 5. A wire loop PQRSP formed by joining two semicircular wires of radii $R_1 \& R_2$ carries a current I as shown in figure below. The magnitude of magnetic induction at center C is

Q 6. A straight section PQ of a circuit lies along the x-axis from x = -(a/2) to x = +(a/2)and carries a steady current I. The magnetic field due to the section PQ at a point x =+a will be -

(a) proportional to a	(b) proportional to a
(c) proportional to (1/a)	(d) equal to zero

Q 7. V shaped wire is in x-y plane. The direction of the field B at P is –

(a) $along + x axis$	(b) $along + z axis$
(c) along – x axis	(d) along $+ y$ axis

Q 8. Two very long current carrying wires A and B carrying current I_0 (along Z-axis) are placed at (- a, 0) and (a, 0) as shown. Find the value of magnetic field at (0, a) –

Q 9. The magnetic field at the center of a circular coil of radius r is π times that due to a long straight wire at a distance r from it, for equal currents. Figure here shows three cases: in all cases the circular part has radius r and straight ones are infinitely long. For same current the B field at the centre P in cases 1, 2, 3, have the ratio:

(a) $-\frac{\pi}{2}:\frac{\pi}{2}:\frac{3\pi}{4}-\frac{1}{2}$ (b) $-\frac{\pi}{2}-1:\frac{\pi}{2}:\frac{3\pi}{4}+\frac{1}{2}$ (c) $-\frac{\pi}{2}:\frac{\pi}{2}:3\frac{\pi}{4}$ (D) $-\frac{\pi}{2}-1:\frac{\pi}{2}-\frac{1}{4}:\frac{3\pi}{4}+\frac{1}{2}$

Q 10. Three infinitely long wires each carrying a current 1 A are placed such that one end of each wire is at origin and one of these wires are along x-axis, y-axis and z-axis. Magnetic induction at point P (-2,0,0) is –

- (a) $\frac{\mu_0}{4\pi} (\hat{j} + \hat{k})$ (b) $\frac{\mu_0}{4\pi} (\hat{j} - \hat{k})$ (c) $\frac{\mu_0}{8\pi} (-\hat{j} + \hat{k})$ (d) $\frac{\mu_0}{8\pi} (\hat{j} + \hat{k})$
- Q 11. The magnetic field intensity due to a thin wire carrying current I in the fig is $\frac{\mu_0 i}{k\pi R}(\pi \alpha + \tan \alpha)$ find the value of k is

 $2\alpha R$

(a) 1 (c) 2

Q 12. Ratio of magnetic field at the center of a current carrying coil of radius R and at a distance of 3R on its axis is (a) 10√10
(b) 20√10

(b) 3 (d) 4

- (c) $2\sqrt{10}$ (d) $\sqrt{10}$
- Q 13. Four long and parallel wires each carrying current I are kept at the corners of a square having side a. Magnetic field produced at centre C is $k \frac{\mu_0 I}{\pi a}$. find the k

Q 14. The negatively and uniformly charged nonconducting disc as shown is rotated clockwise. The direction of the magnetic field at point A in the plane of the disc is –

(a) into the page(c) up to the page

(b) out of the page(d) down the page

Answer Key

Q.1 d	Q.2 d	Q.3 a	Q.4 a	Q.5 b
Q.6 d	Q.7 b	Q.8 b	Q.9 a	Q.10 c
Q.11 c	Q.12 a	Q.13 a	Q.14 a	

× × ×	PLUS India's Be Interaction Structure Live Test Personal Study Pla	ICONIC est Educat ve Live Cla ed Courses s & Quizze Coach	*i ors sses & PDFs s		
24 months No cost EMI		₹:	2,333/n ₹56,0	no 00	>
18 months No cost EMI		₹	2,625/n ₹47,2	no 50	>
12 months No cost EMI		₹	3,208/n ₹38,5	no 00	>
6 months No cost EMI		₹	4,667/n ₹28,0	no 00	>
To be paid as a one-time payment View all plans					
Add a re	eferral cod	e		A	PPLY

PHYSICSLVE

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

	PLUS		
S	India's Be	est Educators	
S	Interactive Live Classes		
8	Structured Courses & PDFs		
\otimes	Live Tests	s & Quizzes	
	Personal	Coach	
	Study Plo	inner	
24 months		₹2.100/mo	
No cost EMI		+10% OFF ₹50,400	>
18 months		₹2.363/mo	
No cost EMI		+10% OFF ₹42,525	>
12 months		₹2 888/mo	
No cost EMI		+10% OFF ₹34,650	>
(markle		F4 200 /	
6 months		₹4,200/mo	>
NO COST EMI		+10% OFF \$25,200	
To be	e paid as c	one-time payment	
	Viev	v all plans	
Awesome! PHYSICSLIVE code applied X			×

Written Solution

DPP-1 Biot-Savart law By Physicsaholics Team

Ans. d

Ans. b

Ans. c

Ans. a

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/34

Video Solution on YouTube:-

https://youtu.be/LbtAgQdCy0I

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/50

